Summer Sale Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 28522818

Home > Google > Google Cloud Certified > Professional-Data-Engineer

Professional-Data-Engineer Google Professional Data Engineer Exam Question and Answers

Question # 4

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Full Access
Question # 5

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Full Access
Question # 6

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all the data in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Full Access
Question # 7

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Full Access
Question # 8

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Full Access
Question # 9

Your company’s customer and order databases are often under heavy load. This makes performing analytics against them difficult without harming operations. The databases are in a MySQL cluster, with nightly backups taken using mysqldump. You want to perform analytics with minimal impact on operations. What should you do?

A.

Add a node to the MySQL cluster and build an OLAP cube there.

B.

Use an ETL tool to load the data from MySQL into Google BigQuery.

C.

Connect an on-premises Apache Hadoop cluster to MySQL and perform ETL.

D.

Mount the backups to Google Cloud SQL, and then process the data using Google Cloud Dataproc.

Full Access
Question # 10

You are building a model to predict whether or not it will rain on a given day. You have thousands of input features and want to see if you can improve training speed by removing some features while having a minimum effect on model accuracy. What can you do?

A.

Eliminate features that are highly correlated to the output labels.

B.

Combine highly co-dependent features into one representative feature.

C.

Instead of feeding in each feature individually, average their values in batches of 3.

D.

Remove the features that have null values for more than 50% of the training records.

Full Access
Question # 11

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

A.

Assign global unique identifiers (GUID) to each data entry.

B.

Compute the hash value of each data entry, and compare it with all historical data.

C.

Store each data entry as the primary key in a separate database and apply an index.

D.

Maintain a database table to store the hash value and other metadata for each data entry.

Full Access
Question # 12

You are building new real-time data warehouse for your company and will use Google BigQuery streaming inserts. There is no guarantee that data will only be sent in once but you do have a unique ID for each row of data and an event timestamp. You want to ensure that duplicates are not included while interactively querying data. Which query type should you use?

A.

Include ORDER BY DESK on timestamp column and LIMIT to 1.

B.

Use GROUP BY on the unique ID column and timestamp column and SUM on the values.

C.

Use the LAG window function with PARTITION by unique ID along with WHERE LAG IS NOT NULL.

D.

Use the ROW_NUMBER window function with PARTITION by unique ID along with WHERE row equals 1.

Full Access
Question # 13

Your company is performing data preprocessing for a learning algorithm in Google Cloud Dataflow. Numerous data logs are being are being generated during this step, and the team wants to analyze them. Due to the dynamic nature of the campaign, the data is growing exponentially every hour.

The data scientists have written the following code to read the data for a new key features in the logs.

BigQueryIO.Read

.named(“ReadLogData”)

.from(“clouddataflow-readonly:samples.log_data”)

You want to improve the performance of this data read. What should you do?

A.

Specify the TableReference object in the code.

B.

Use .fromQuery operation to read specific fields from the table.

C.

Use of both the Google BigQuery TableSchema and TableFieldSchema classes.

D.

Call a transform that returns TableRow objects, where each element in the PCollexction represents a single row in the table.

Full Access
Question # 14

Your company built a TensorFlow neural-network model with a large number of neurons and layers. The model fits well for the training data. However, when tested against new data, it performs poorly. What method can you employ to address this?

A.

Threading

B.

Serialization

C.

Dropout Methods

D.

Dimensionality Reduction

Full Access
Question # 15

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Full Access
Question # 16

Your company is running their first dynamic campaign, serving different offers by analyzing real-time data during the holiday season. The data scientists are collecting terabytes of data that rapidly grows every hour during their 30-day campaign. They are using Google Cloud Dataflow to preprocess the data and collect the feature (signals) data that is needed for the machine learning model in Google Cloud Bigtable. The team is observing suboptimal performance with reads and writes of their initial load of 10 TB of data. They want to improve this performance while minimizing cost. What should they do?

A.

Redefine the schema by evenly distributing reads and writes across the row space of the table.

B.

The performance issue should be resolved over time as the site of the BigDate cluster is increased.

C.

Redesign the schema to use a single row key to identify values that need to be updated frequently in the cluster.

D.

Redesign the schema to use row keys based on numeric IDs that increase sequentially per user viewing the offers.

Full Access
Question # 17

Your company’s on-premises Apache Hadoop servers are approaching end-of-life, and IT has decided to migrate the cluster to Google Cloud Dataproc. A like-for-like migration of the cluster would require 50 TB of Google Persistent Disk per node. The CIO is concerned about the cost of using that much block storage. You want to minimize the storage cost of the migration. What should you do?

A.

Put the data into Google Cloud Storage.

B.

Use preemptible virtual machines (VMs) for the Cloud Dataproc cluster.

C.

Tune the Cloud Dataproc cluster so that there is just enough disk for all data.

D.

Migrate some of the cold data into Google Cloud Storage, and keep only the hot data in Persistent Disk.

Full Access
Question # 18

Your startup has never implemented a formal security policy. Currently, everyone in the company has access to the datasets stored in Google BigQuery. Teams have freedom to use the service as they see fit, and they have not documented their use cases. You have been asked to secure the data warehouse. You need to discover what everyone is doing. What should you do first?

A.

Use Google Stackdriver Audit Logs to review data access.

B.

Get the identity and access management IIAM) policy of each table

C.

Use Stackdriver Monitoring to see the usage of BigQuery query slots.

D.

Use the Google Cloud Billing API to see what account the warehouse is being billed to.

Full Access
Question # 19

Your company is in a highly regulated industry. One of your requirements is to ensure individual users have access only to the minimum amount of information required to do their jobs. You want to enforce this requirement with Google BigQuery. Which three approaches can you take? (Choose three.)

A.

Disable writes to certain tables.

B.

Restrict access to tables by role.

C.

Ensure that the data is encrypted at all times.

D.

Restrict BigQuery API access to approved users.

E.

Segregate data across multiple tables or databases.

F.

Use Google Stackdriver Audit Logging to determine policy violations.

Full Access
Question # 20

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Full Access
Question # 21

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Full Access
Question # 22

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor= ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Full Access
Question # 23

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Full Access
Question # 24

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Full Access
Question # 25

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Full Access
Question # 26

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

    The user profile: What the user likes and doesn’t like to eat

    The user account information: Name, address, preferred meal times

    The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Full Access
Question # 27

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Full Access
Question # 28

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Full Access
Question # 29

MJTelco is building a custom interface to share data. They have these requirements:

    They need to do aggregations over their petabyte-scale datasets.

    They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Full Access
Question # 30

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Full Access
Question # 31

Cloud Dataproc is a managed Apache Hadoop and Apache _____ service.

A.

Blaze

B.

Spark

C.

Fire

D.

Ignite

Full Access
Question # 32

The YARN ResourceManager and the HDFS NameNode interfaces are available on a Cloud Dataproc cluster ____.

A.

application node

B.

conditional node

C.

master node

D.

worker node

Full Access
Question # 33

Which of these numbers are adjusted by a neural network as it learns from a training dataset (select 2 answers)?

A.

Weights

B.

Biases

C.

Continuous features

D.

Input values

Full Access
Question # 34

When you store data in Cloud Bigtable, what is the recommended minimum amount of stored data?

A.

500 TB

B.

1 GB

C.

1 TB

D.

500 GB

Full Access
Question # 35

Which of the following statements about Legacy SQL and Standard SQL is not true?

A.

Standard SQL is the preferred query language for BigQuery.

B.

If you write a query in Legacy SQL, it might generate an error if you try to run it with Standard SQL.

C.

One difference between the two query languages is how you specify fully-qualified table names (i.e. table names that include their associated project name).

D.

You need to set a query language for each dataset and the default is Standard SQL.

Full Access
Question # 36

Cloud Dataproc charges you only for what you really use with _____ billing.

A.

month-by-month

B.

minute-by-minute

C.

week-by-week

D.

hour-by-hour

Full Access
Question # 37

Which SQL keyword can be used to reduce the number of columns processed by BigQuery?

A.

BETWEEN

B.

WHERE

C.

SELECT

D.

LIMIT

Full Access
Question # 38

Which TensorFlow function can you use to configure a categorical column if you don't know all of the possible values for that column?

A.

categorical_column_with_vocabulary_list

B.

categorical_column_with_hash_bucket

C.

categorical_column_with_unknown_values

D.

sparse_column_with_keys

Full Access
Question # 39

Your team is working on a binary classification problem. You have trained a support vector machine (SVM) classifier with default parameters, and received an area under the Curve (AUC) of 0.87 on the validation set. You want to increase the AUC of the model. What should you do?

A.

Perform hyperparameter tuning

B.

Train a classifier with deep neural networks, because neural networks would always beat SVMs

C.

Deploy the model and measure the real-world AUC; it’s always higher because of generalization

D.

Scale predictions you get out of the model (tune a scaling factor as a hyperparameter) in order to get the highest AUC

Full Access
Question # 40

You store historic data in Cloud Storage. You need to perform analytics on the historic data. You want to use a solution to detect invalid data entries and perform data transformations that will not require programming or knowledge of SQL.

What should you do?

A.

Use Cloud Dataflow with Beam to detect errors and perform transformations.

B.

Use Cloud Dataprep with recipes to detect errors and perform transformations.

C.

Use Cloud Dataproc with a Hadoop job to detect errors and perform transformations.

D.

Use federated tables in BigQuery with queries to detect errors and perform transformations.

Full Access
Question # 41

One of your encryption keys stored in Cloud Key Management Service (Cloud KMS) was exposed. You need to re-encrypt all of your CMEK-protected Cloud Storage data that used that key. and then delete the compromised key. You also want to reduce the risk of objects getting written without customer-managed encryption key (CMEK protection in the future. What should you do?

A.

Rotate the Cloud KMS key version. Continue to use the same Cloud Storage bucket.

B.

Create a new Cloud KMS key. Set the default CMEK key on the existing Cloud Storage bucket to the new one.

C.

Create a new Cloud KMS key. Create a new Cloud Storage bucket. Copy all objects from the old bucket to the new one bucket while specifying the new Cloud KMS key in the copy command.

D.

Create a new Cloud KMS key. Create a new Cloud Storage bucket configured to use the new key as the default CMEK key. Copy all objects from the old bucket to the new bucket without specifying a key.

Full Access
Question # 42

You have a variety of files in Cloud Storage that your data science team wants to use in their models Currently, users do not have a method to explore, cleanse, and validate the data in Cloud Storage. You are looking for a low code solution that can be used by your data science team to quickly cleanse and explore data within Cloud Storage. What should you do?

A.

Load the data into BigQuery and use SQL to transform the data as necessary Provide the data science team access to staging tables to explore the raw data.

B.

Provide the data science team access to Dataflow to create a pipeline to prepare and validate the raw data and load data into BigQuery for data exploration.

C.

Provide the data science team access to Dataprep to prepare, validate, and explore the data within Cloud Storage.

D.

Create an external table in BigQuery and use SQL to transform the data as necessary Provide the data science team access to the external tables to explore the raw data.

Full Access
Question # 43

You are using Google BigQuery as your data warehouse. Your users report that the following simple query is running very slowly, no matter when they run the query:

SELECT country, state, city FROM [myproject:mydataset.mytable] GROUP BY country

You check the query plan for the query and see the following output in the Read section of Stage:1:

What is the most likely cause of the delay for this query?

A.

Users are running too many concurrent queries in the system

B.

The [myproject:mydataset.mytable] table has too many partitions

C.

Either the state or the city columns in the [myproject:mydataset.mytable] table have too many

NULL values

D.

Most rows in the [myproject:mydataset.mytable] table have the same value in the country column, causing data skew

Full Access
Question # 44

You work for an advertising company, and you’ve developed a Spark ML model to predict click-through rates at advertisement blocks. You’ve been developing everything at your on-premises data center, and now your company is migrating to Google Cloud. Your data center will be migrated to BigQuery. You periodically retrain your Spark ML models, so you need to migrate existing training pipelines to Google Cloud. What should you do?

A.

Use Cloud ML Engine for training existing Spark ML models

B.

Rewrite your models on TensorFlow, and start using Cloud ML Engine

C.

Use Cloud Dataproc for training existing Spark ML models, but start reading data directly from BigQuery

D.

Spin up a Spark cluster on Compute Engine, and train Spark ML models on the data exported from BigQuery

Full Access
Question # 45

You need to create a near real-time inventory dashboard that reads the main inventory tables in your BigQuery data warehouse. Historical inventory data is stored as inventory balances by item and location. You have several thousand updates to inventory every hour. You want to maximize performance of the dashboard and ensure that the data is accurate. What should you do?

A.

Leverage BigQuery UPDATE statements to update the inventory balances as they are changing.

B.

Partition the inventory balance table by item to reduce the amount of data scanned with each inventory update.

C.

Use the BigQuery streaming the stream changes into a daily inventory movement table. Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.

D.

Use the BigQuery bulk loader to batch load inventory changes into a daily inventory movement table. Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.

Full Access
Question # 46

NO: 62

Your company receives both batch- and stream-based event data. You want to process the data using Google Cloud Dataflow over a predictable time period. However, you realize that in some instances data can arrive late or out of order. How should you design your Cloud Dataflow pipeline to handle data that is late or out of order?

A.

Set a single global window to capture all the data.

B.

Set sliding windows to capture all the lagged data.

C.

Use watermarks and timestamps to capture the lagged data.

D.

Ensure every datasource type (stream or batch) has a timestamp, and use the timestamps to define the logic for lagged data.

Full Access
Question # 47

You need to look at BigQuery data from a specific table multiple times a day. The underlying table you are querying is several petabytes in size, but you want to filter your data and provide simple aggregations to downstream users. You want to run queries faster and get up-to-date insights quicker. What should you do?

A.

Run a scheduled query to pull the necessary data at specific intervals daily.

B.

Create a materialized view based off of the query being run.

C.

Use a cached query to accelerate time to results.

D.

Limit the query columns being pulled in the final result.

Full Access
Question # 48

You are a head of BI at a large enterprise company with multiple business units that each have different priorities and budgets. You use on-demand pricing for BigQuery with a quota of 2K concurrent on-demand slots per project. Users at your organization sometimes don’t get slots to execute their query and you need to correct this. You’d like to avoid introducing new projects to your account.

What should you do?

A.

Convert your batch BQ queries into interactive BQ queries.

B.

Create an additional project to overcome the 2K on-demand per-project quota.

C.

Switch to flat-rate pricing and establish a hierarchical priority model for your projects.

D.

Increase the amount of concurrent slots per project at the Quotas page at the Cloud Console.

Full Access
Question # 49

After migrating ETL jobs to run on BigQuery, you need to verify that the output of the migrated jobs is the same as the output of the original. You’ve loaded a table containing the output of the original job and want to compare the contents with output from the migrated job to show that they are identical. The tables do not contain a primary key column that would enable you to join them together for comparison.

What should you do?

A.

Select random samples from the tables using the RAND() function and compare the samples.

B.

Select random samples from the tables using the HASH() function and compare the samples.

C.

Use a Dataproc cluster and the BigQuery Hadoop connector to read the data from each table and calculate a hash from non-timestamp columns of the table after sorting. Compare the hashes of each table.

D.

Create stratified random samples using the OVER() function and compare equivalent samples from each table.

Full Access
Question # 50

You are migrating your on-premises data warehouse to BigQuery. As part of the migration, you want to facilitate cross-team collaboration to get the most value out of the organization's data. You need to design an architecture that would allow teams within the organization to securely publish, discover, and subscribe to read-only data in a self-service manner. You need to minimize costs while also maximizing data freshness What should you do?

A.

Create authorized datasets to publish shared data in the subscribing team's project.

B.

Create a new dataset for sharing in each individual team's project. Grant the subscribing team the bigquery. dataViewer role on the

dataset.

C.

Use BigQuery Data Transfer Service to copy datasets to a centralized BigQuery project for sharing.

D.

Use Analytics Hub to facilitate data sharing.

Full Access
Question # 51

You are collecting loT sensor data from millions of devices across the world and storing the data in BigQuery. Your access pattern is based on recent data tittered by location_id and device_version with the following query:

You want to optimize your queries for cost and performance. How should you structure your data?

A.

Partition table data by create_date, location_id and device_version

B.

Partition table data by create_date cluster table data by tocation_id and device_version

C.

Cluster table data by create_date location_id and device_version

D.

Cluster table data by create_date, partition by location and device_version

Full Access
Question # 52

You have enabled the free integration between Firebase Analytics and Google BigQuery. Firebase now

automatically creates a new table daily in BigQuery in the format app_events_YYYYMMDD. You want to

query all of the tables for the past 30 days in legacy SQL. What should you do?

A.

Use the TABLE_DATE_RANGE function

B.

Use the WHERE_PARTITIONTIME pseudo column

C.

Use WHERE date BETWEEN YYYY-MM-DD AND YYYY-MM-DD

D.

Use SELECT IF.(date >= YYYY-MM-DD AND date <= YYYY-MM-DD

Full Access
Question # 53

You are designing storage for two relational tables that are part of a 10-TB database on Google Cloud. You want to support transactions that scale horizontally. You also want to optimize data for range queries on nonkey columns. What should you do?

A.

Use Cloud SQL for storage. Add secondary indexes to support query patterns.

B.

Use Cloud SQL for storage. Use Cloud Dataflow to transform data to support query patterns.

C.

Use Cloud Spanner for storage. Add secondary indexes to support query patterns.

D.

Use Cloud Spanner for storage. Use Cloud Dataflow to transform data to support query patterns.

Full Access
Question # 54

You have a data pipeline with a Dataflow job that aggregates and writes time series metrics to Bigtable. You notice that data is slow to update in Bigtable. This data feeds a dashboard used by thousands of users across the organization. You need to support additional concurrent users and reduce the amount of time required to write the data. What should you do?

Choose 2 answers

A.

Configure your Dataflow pipeline to use local execution.

B.

Modify your Dataflow pipeline lo use the Flatten transform before writing to Bigtable.

C.

Modify your Dataflow pipeline to use the CoGrcupByKey transform before writing to Bigtable.

D.

Increase the maximum number of Dataflow workers by setting maxNumWorkers in PipelineOptions.

E.

Increase the number of nodes in the Bigtable cluster.

Full Access
Question # 55

You are designing a system that requires an ACID-compliant database. You must ensure that the system requires minimal human intervention in case of a failure. What should you do?

A.

Configure a Cloud SQL for MySQL instance with point-in-time recovery enabled.

B.

Configure a Cloud SQL for PostgreSQL instance with high availability enabled.

C.

Configure a Bigtable instance with more than one cluster.

D.

Configure a BJgQuery table with a multi-region configuration.

Full Access
Question # 56

You are using BigQuery with a regional dataset that includes a table with the daily sales volumes. This table is updated multiple times per day. You need to protect your sales table in case of regional failures with a recovery point objective (RPO) of less than 24 hours, while keeping costs to a minimum. What should you do?

A.

Schedule a daily BigQuery snapshot of the table.

B.

Schedule a daily export of the table to a Cloud Storage dual or multi-region bucket.

C.

Schedule a daily copy of the dataset to a backup region.

D.

Modify ETL job to load the data into both the current and another backup region.

Full Access
Question # 57

You use a dataset in BigQuery for analysis. You want to provide third-party companies with access to the same dataset. You need to keep the costs of data sharing low and ensure that the data is current. What should you do?

A.

Use Analytics Hub to control data access, and provide third party companies with access to the dataset

B.

Create a Dataflow job that reads the data in frequent time intervals and writes it to the relevant BigQuery dataset or Cloud Storage bucket for third-party companies to use.

C.

Use Cloud Scheduler to export the data on a regular basis to Cloud Storage, and provide third-party companies with access to the bucket.

D.

Create a separate dataset in BigQuery that contains the relevant data to share, and provide third-party companies with access to the new dataset.

Full Access