New Year Special Sale - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: mxmas70

Home > Databricks > Databricks Certification > Databricks-Certified-Professional-Data-Engineer

Databricks-Certified-Professional-Data-Engineer Databricks Certified Data Engineer Professional Exam Question and Answers

Question # 4

A DLT pipeline includes the following streaming tables:

Raw_lot ingest raw device measurement data from a heart rate tracking device.

Bgm_stats incrementally computes user statistics based on BPM measurements from raw_lot.

How can the data engineer configure this pipeline to be able to retain manually deleted or updated records in the raw_iot table while recomputing the downstream table when a pipeline update is run?

A.

Set the skipChangeCommits flag to true on bpm_stats

B.

Set the SkipChangeCommits flag to true raw_lot

C.

Set the pipelines, reset, allowed property to false on bpm_stats

D.

Set the pipelines, reset, allowed property to false on raw_iot

Full Access
Question # 5

The data engineering team maintains the following code:

Assuming that this code produces logically correct results and the data in the source tables has been de-duplicated and validated, which statement describes what will occur when this code is executed?

A.

A batch job will update the enriched_itemized_orders_by_account table, replacing only those rows that have different values than the current version of the table, using accountID as the primary key.

B.

The enriched_itemized_orders_by_account table will be overwritten using the current valid version of data in each of the three tables referenced in the join logic.

C.

An incremental job will leverage information in the state store to identify unjoined rows in the source tables and write these rows to the enriched_iteinized_orders_by_account table.

D.

An incremental job will detect if new rows have been written to any of the source tables; if new rows are detected, all results will be recalculated and used to overwrite the enriched_itemized_orders_by_account table.

E.

No computation will occur until enriched_itemized_orders_by_account is queried; upon query materialization, results will be calculated using the current valid version of data in each of the three tables referenced in the join logic.

Full Access
Question # 6

A Databricks job has been configured with 3 tasks, each of which is a Databricks notebook. Task A does not depend on other tasks. Tasks B and C run in parallel, with each having a serial dependency on Task A.

If task A fails during a scheduled run, which statement describes the results of this run?

A.

Because all tasks are managed as a dependency graph, no changes will be committed to the Lakehouse until all tasks have successfully been completed.

B.

Tasks B and C will attempt to run as configured; any changes made in task A will be rolled back due to task failure.

C.

Unless all tasks complete successfully, no changes will be committed to the Lakehouse; because task A failed, all commits will be rolled back automatically.

D.

Tasks B and C will be skipped; some logic expressed in task A may have been committed before task failure.

E.

Tasks B and C will be skipped; task A will not commit any changes because of stage failure.

Full Access
Question # 7

In order to prevent accidental commits to production data, a senior data engineer has instituted a policy that all development work will reference clones of Delta Lake tables. After testing both deep and shallow clone, development tables are created using shallow clone.

A few weeks after initial table creation, the cloned versions of several tables implemented as Type 1 Slowly Changing Dimension (SCD) stop working. The transaction logs for the source tables show that vacuum was run the day before.

Why are the cloned tables no longer working?

A.

The data files compacted by vacuum are not tracked by the cloned metadata; running refresh on the cloned table will pull in recent changes.

B.

Because Type 1 changes overwrite existing records, Delta Lake cannot guarantee data consistency for cloned tables.

C.

The metadata created by the clone operation is referencing data files that were purged as invalid by the vacuum command

D.

Running vacuum automatically invalidates any shallow clones of a table; deep clone should always be used when a cloned table will be repeatedly queried.

Full Access
Question # 8

The data engineering team maintains the following code:

Assuming that this code produces logically correct results and the data in the source table has been de-duplicated and validated, which statement describes what will occur when this code is executed?

A.

The silver_customer_sales table will be overwritten by aggregated values calculated from all records in the gold_customer_lifetime_sales_summary table as a batch job.

B.

A batch job will update the gold_customer_lifetime_sales_summary table, replacing only those rows that have different values than the current version of the table, using customer_id as the primary key.

C.

The gold_customer_lifetime_sales_summary table will be overwritten by aggregated values calculated from all records in the silver_customer_sales table as a batch job.

D.

An incremental job will leverage running information in the state store to update aggregate values in the gold_customer_lifetime_sales_summary table.

E.

An incremental job will detect if new rows have been written to the silver_customer_sales table; if new rows are detected, all aggregates will be recalculated and used to overwrite the gold_customer_lifetime_sales_summary table.

Full Access
Question # 9

What statement is true regarding the retention of job run history?

A.

It is retained until you export or delete job run logs

B.

It is retained for 30 days, during which time you can deliver job run logs to DBFS or S3

C.

t is retained for 60 days, during which you can export notebook run results to HTML

D.

It is retained for 60 days, after which logs are archived

E.

It is retained for 90 days or until the run-id is re-used through custom run configuration

Full Access
Question # 10

Review the following error traceback:

Which statement describes the error being raised?

A.

The code executed was PvSoark but was executed in a Scala notebook.

B.

There is no column in the table named heartrateheartrateheartrate

C.

There is a type error because a column object cannot be multiplied.

D.

There is a type error because a DataFrame object cannot be multiplied.

E.

There is a syntax error because the heartrate column is not correctly identified as a column.

Full Access
Question # 11

Which REST API call can be used to review the notebooks configured to run as tasks in a multi-task job?

A.

/jobs/runs/list

B.

/jobs/runs/get-output

C.

/jobs/runs/get

D.

/jobs/get

E.

/jobs/list

Full Access
Question # 12

The following table consists of items found in user carts within an e-commerce website.

The following MERGE statement is used to update this table using an updates view, with schema evaluation enabled on this table.

How would the following update be handled?

A.

The update is moved to separate ''restored'' column because it is missing a column expected in the target schema.

B.

The new restored field is added to the target schema, and dynamically read as NULL for existing unmatched records.

C.

The update throws an error because changes to existing columns in the target schema are not supported.

D.

The new nested field is added to the target schema, and files underlying existing records are updated to include NULL values for the new field.

Full Access
Question # 13

A junior data engineer is migrating a workload from a relational database system to the Databricks Lakehouse. The source system uses a star schema, leveraging foreign key constrains and multi-table inserts to validate records on write.

Which consideration will impact the decisions made by the engineer while migrating this workload?

A.

All Delta Lake transactions are ACID compliance against a single table, and Databricks does not enforce foreign key constraints.

B.

Databricks only allows foreign key constraints on hashed identifiers, which avoid collisions in highly-parallel writes.

C.

Foreign keys must reference a primary key field; multi-table inserts must leverage Delta Lake's upsert functionality.

D.

Committing to multiple tables simultaneously requires taking out multiple table locks and can lead to a state of deadlock.

Full Access
Question # 14

A junior data engineer has been asked to develop a streaming data pipeline with a grouped aggregation using DataFrame df. The pipeline needs to calculate the average humidity and average temperature for each non-overlapping five-minute interval. Incremental state information should be maintained for 10 minutes for late-arriving data.

Streaming DataFrame df has the following schema:

"device_id INT, event_time TIMESTAMP, temp FLOAT, humidity FLOAT"

Code block:

Choose the response that correctly fills in the blank within the code block to complete this task.

A.

withWatermark("event_time", "10 minutes")

B.

awaitArrival("event_time", "10 minutes")

C.

await("event_time + ‘10 minutes'")

D.

slidingWindow("event_time", "10 minutes")

E.

delayWrite("event_time", "10 minutes")

Full Access
Question # 15

A junior data engineer has configured a workload that posts the following JSON to the Databricks REST API endpoint 2.0/jobs/create.

Assuming that all configurations and referenced resources are available, which statement describes the result of executing this workload three times?

A.

Three new jobs named "Ingest new data" will be defined in the workspace, and they will each run once daily.

B.

The logic defined in the referenced notebook will be executed three times on new clusters with the configurations of the provided cluster ID.

C.

Three new jobs named "Ingest new data" will be defined in the workspace, but no jobs will be executed.

D.

One new job named "Ingest new data" will be defined in the workspace, but it will not be executed.

E.

The logic defined in the referenced notebook will be executed three times on the referenced existing all purpose cluster.

Full Access
Question # 16

An upstream system is emitting change data capture (CDC) logs that are being written to a cloud object storage directory. Each record in the log indicates the change type (insert, update, or delete) and the values for each field after the change. The source table has a primary key identified by the field pk_id.

For auditing purposes, the data governance team wishes to maintain a full record of all values that have ever been valid in the source system. For analytical purposes, only the most recent value for each record needs to be recorded. The Databricks job to ingest these records occurs once per hour, but each individual record may have changed multiple times over the course of an hour.

Which solution meets these requirements?

A.

Create a separate history table for each pk_id resolve the current state of the table by running a union all filtering the history tables for the most recent state.

B.

Use merge into to insert, update, or delete the most recent entry for each pk_id into a bronze table, then propagate all changes throughout the system.

C.

Iterate through an ordered set of changes to the table, applying each in turn; rely on Delta Lake's versioning ability to create an audit log.

D.

Use Delta Lake's change data feed to automatically process CDC data from an external system, propagating all changes to all dependent tables in the Lakehouse.

E.

Ingest all log information into a bronze table; use merge into to insert, update, or delete the most recent entry for each pk_id into a silver table to recreate the current table state.

Full Access
Question # 17

A data architect has heard about lake's built-in versioning and time travel capabilities. For auditing purposes they have a requirement to maintain a full of all valid street addresses as they appear in the customers table.

The architect is interested in implementing a Type 1 table, overwriting existing records with new values and relying on Delta Lake time travel to support long-term auditing. A data engineer on the project feels that a Type 2 table will provide better performance and scalability.

Which piece of information is critical to this decision?

A.

Delta Lake time travel does not scale well in cost or latency to provide a long-term versioning solution.

B.

Delta Lake time travel cannot be used to query previous versions of these tables because Type 1 changes modify data files in place.

C.

Shallow clones can be combined with Type 1 tables to accelerate historic queries for long-term versioning.

D.

Data corruption can occur if a query fails in a partially completed state because Type 2 tables requires

Setting multiple fields in a single update.

Full Access
Question # 18

A junior data engineer on your team has implemented the following code block.

The view new_events contains a batch of records with the same schema as the events Delta table. The event_id field serves as a unique key for this table.

When this query is executed, what will happen with new records that have the same event_id as an existing record?

A.

They are merged.

B.

They are ignored.

C.

They are updated.

D.

They are inserted.

E.

They are deleted.

Full Access
Question # 19

Which distribution does Databricks support for installing custom Python code packages?

A.

sbt

B.

CRAN

C.

CRAM

D.

nom

E.

Wheels

F.

jars

Full Access
Question # 20

The data science team has requested assistance in accelerating queries on free form text from user reviews. The data is currently stored in Parquet with the below schema:

item_id INT, user_id INT, review_id INT, rating FLOAT, review STRING

The review column contains the full text of the review left by the user. Specifically, the data science team is looking to identify if any of 30 key words exist in this field.

A junior data engineer suggests converting this data to Delta Lake will improve query performance.

Which response to the junior data engineer s suggestion is correct?

A.

Delta Lake statistics are not optimized for free text fields with high cardinality.

B.

Text data cannot be stored with Delta Lake.

C.

ZORDER ON review will need to be run to see performance gains.

D.

The Delta log creates a term matrix for free text fields to support selective filtering.

E.

Delta Lake statistics are only collected on the first 4 columns in a table.

Full Access
Question # 21

In order to facilitate near real-time workloads, a data engineer is creating a helper function to leverage the schema detection and evolution functionality of Databricks Auto Loader. The desired function will automatically detect the schema of the source directly, incrementally process JSON files as they arrive in a source directory, and automatically evolve the schema of the table when new fields are detected.

The function is displayed below with a blank:

Which response correctly fills in the blank to meet the specified requirements?

A.

Option A

B.

Option B

C.

Option C

D.

Option D

E.

Option E

Full Access
Question # 22

A user wants to use DLT expectations to validate that a derived table report contains all records from the source, included in the table validation_copy.

The user attempts and fails to accomplish this by adding an expectation to the report table definition.

Which approach would allow using DLT expectations to validate all expected records are present in this table?

A.

Define a SQL UDF that performs a left outer join on two tables, and check if this returns null values for report key values in a DLT expectation for the report table.

B.

Define a function that performs a left outer join on validation_copy and report and report, and check against the result in a DLT expectation for the report table

C.

Define a temporary table that perform a left outer join on validation_copy and report, and define an expectation that no report key values are null

D.

Define a view that performs a left outer join on validation_copy and report, and reference this view in DLT expectations for the report table

Full Access
Question # 23

Which statement characterizes the general programming model used by Spark Structured Streaming?

A.

Structured Streaming leverages the parallel processing of GPUs to achieve highly parallel data throughput.

B.

Structured Streaming is implemented as a messaging bus and is derived from Apache Kafka.

C.

Structured Streaming uses specialized hardware and I/O streams to achieve sub-second latency for data transfer.

D.

Structured Streaming models new data arriving in a data stream as new rows appended to an unbounded table.

E.

Structured Streaming relies on a distributed network of nodes that hold incremental state values for cached stages.

Full Access
Question # 24

An hourly batch job is configured to ingest data files from a cloud object storage container where each batch represent all records produced by the source system in a given hour. The batch job to process these records into the Lakehouse is sufficiently delayed to ensure no late-arriving data is missed. The user_id field represents a unique key for the data, which has the following schema:

user_id BIGINT, username STRING, user_utc STRING, user_region STRING, last_login BIGINT, auto_pay BOOLEAN, last_updated BIGINT

New records are all ingested into a table named account_history which maintains a full record of all data in the same schema as the source. The next table in the system is named account_current and is implemented as a Type 1 table representing the most recent value for each unique user_id.

Assuming there are millions of user accounts and tens of thousands of records processed hourly, which implementation can be used to efficiently update the described account_current table as part of each hourly batch job?

A.

Use Auto Loader to subscribe to new files in the account history directory; configure a Structured Streaminq trigger once job to batch update newly detected files into the account current table.

B.

Overwrite the account current table with each batch using the results of a query against the account history table grouping by user id and filtering for the max value of last updated.

C.

Filter records in account history using the last updated field and the most recent hour processed, as well as the max last iogin by user id write a merge statement to update or insert the most recent value for each user id.

D.

Use Delta Lake version history to get the difference between the latest version of account history and one version prior, then write these records to account current.

E.

Filter records in account history using the last updated field and the most recent hour processed, making sure to deduplicate on username; write a merge statement to update or insert the

most recent value for each username.

Full Access
Question # 25

A data engineer wants to join a stream of advertisement impressions (when an ad was shown) with another stream of user clicks on advertisements to correlate when impression led to monitizable clicks.

Which solution would improve the performance?

A)

B)

C)

D)

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Full Access
Question # 26

The following code has been migrated to a Databricks notebook from a legacy workload:

The code executes successfully and provides the logically correct results, however, it takes over 20 minutes to extract and load around 1 GB of data.

Which statement is a possible explanation for this behavior?

A.

%sh triggers a cluster restart to collect and install Git. Most of the latency is related to cluster startup time.

B.

Instead of cloning, the code should use %sh pip install so that the Python code can get executed in parallel across all nodes in a cluster.

C.

%sh does not distribute file moving operations; the final line of code should be updated to use %fs instead.

D.

Python will always execute slower than Scala on Databricks. The run.py script should be refactored to Scala.

E.

%sh executes shell code on the driver node. The code does not take advantage of the worker nodes or Databricks optimized Spark.

Full Access
Question # 27

Which Python variable contains a list of directories to be searched when trying to locate required modules?

A.

importlib.resource path

B.

,sys.path

C.

os-path

D.

pypi.path

E.

pylib.source

Full Access
Question # 28

A table is registered with the following code:

Both users and orders are Delta Lake tables. Which statement describes the results of querying recent_orders?

A.

All logic will execute at query time and return the result of joining the valid versions of the source tables at the time the query finishes.

B.

All logic will execute when the table is defined and store the result of joining tables to the DBFS; this stored data will be returned when the table is queried.

C.

Results will be computed and cached when the table is defined; these cached results will incrementally update as new records are inserted into source tables.

D.

All logic will execute at query time and return the result of joining the valid versions of the source tables at the time the query began.

E.

The versions of each source table will be stored in the table transaction log; query results will be saved to DBFS with each query.

Full Access
Question # 29

The data architect has decided that once data has been ingested from external sources into the

Databricks Lakehouse, table access controls will be leveraged to manage permissions for all production tables and views.

The following logic was executed to grant privileges for interactive queries on a production database to the core engineering group.

GRANT USAGE ON DATABASE prod TO eng;

GRANT SELECT ON DATABASE prod TO eng;

Assuming these are the only privileges that have been granted to the eng group and that these users are not workspace administrators, which statement describes their privileges?

A.

Group members have full permissions on the prod database and can also assign permissions to other users or groups.

B.

Group members are able to list all tables in the prod database but are not able to see the results of any queries on those tables.

C.

Group members are able to query and modify all tables and views in the prod database, but cannot create new tables or views.

D.

Group members are able to query all tables and views in the prod database, but cannot create or edit anything in the database.

E.

Group members are able to create, query, and modify all tables and views in the prod database, but cannot define custom functions.

Full Access
Question # 30

The data governance team is reviewing user for deleting records for compliance with GDPR. The following logic has been implemented to propagate deleted requests from the user_lookup table to the user aggregate table.

Assuming that user_id is a unique identifying key and that all users have requested deletion have been removed from the user_lookup table, which statement describes whether successfully executing the above logic guarantees that the records to be deleted from the user_aggregates table are no longer accessible and why?

A.

No: files containing deleted records may still be accessible with time travel until a BACUM command is used to remove invalidated data files.

B.

Yes: Delta Lake ACID guarantees provide assurance that the DELETE command successed fully and permanently purged these records.

C.

No: the change data feed only tracks inserts and updates not deleted records.

D.

No: the Delta Lake DELETE command only provides ACID guarantees when combined with the MERGE INTO command

Full Access
Question # 31

A data team's Structured Streaming job is configured to calculate running aggregates for item sales to update a downstream marketing dashboard. The marketing team has introduced a new field to track the number of times this promotion code is used for each item. A junior data engineer suggests updating the existing query as follows: Note that proposed changes are in bold.

Which step must also be completed to put the proposed query into production?

A.

Increase the shuffle partitions to account for additional aggregates

B.

Specify a new checkpointlocation

C.

Run REFRESH TABLE delta, /item_agg'

D.

Remove .option (mergeSchema', true') from the streaming write

Full Access
Question # 32

The data architect has mandated that all tables in the Lakehouse should be configured as external (also known as "unmanaged") Delta Lake tables.

Which approach will ensure that this requirement is met?

A.

When a database is being created, make sure that the LOCATION keyword is used.

B.

When configuring an external data warehouse for all table storage, leverage Databricks for all ELT.

C.

When data is saved to a table, make sure that a full file path is specified alongside the Delta format.

D.

When tables are created, make sure that the EXTERNAL keyword is used in the CREATE TABLE statement.

E.

When the workspace is being configured, make sure that external cloud object storage has been mounted.

Full Access
Question # 33

An external object storage container has been mounted to the location /mnt/finance_eda_bucket.

The following logic was executed to create a database for the finance team:

After the database was successfully created and permissions configured, a member of the finance team runs the following code:

If all users on the finance team are members of the finance group, which statement describes how the tx_sales table will be created?

A.

A logical table will persist the query plan to the Hive Metastore in the Databricks control plane.

B.

An external table will be created in the storage container mounted to /mnt/finance eda bucket.

C.

A logical table will persist the physical plan to the Hive Metastore in the Databricks control plane.

D.

An managed table will be created in the storage container mounted to /mnt/finance eda bucket.

E.

A managed table will be created in the DBFS root storage container.

Full Access
Question # 34

A user new to Databricks is trying to troubleshoot long execution times for some pipeline logic they are working on. Presently, the user is executing code cell-by-cell, using display() calls to confirm code is producing the logically correct results as new transformations are added to an operation. To get a measure of average time to execute, the user is running each cell multiple times interactively.

Which of the following adjustments will get a more accurate measure of how code is likely to perform in production?

A.

Scala is the only language that can be accurately tested using interactive notebooks; because the best performance is achieved by using Scala code compiled to JARs. all PySpark and Spark SQL logic should be refactored.

B.

The only way to meaningfully troubleshoot code execution times in development notebooks Is to use production-sized data and production-sized clusters with Run All execution.

C.

Production code development should only be done using an IDE; executing code against a local build of open source Spark and Delta Lake will provide the most accurate benchmarks for how code will perform in production.

D.

Calling display () forces a job to trigger, while many transformations will only add to the logical query plan; because of caching, repeated execution of the same logic does not provide meaningful results.

E.

The Jobs Ul should be leveraged to occasionally run the notebook as a job and track execution time during incremental code development because Photon can only be enabled on clusters launched for scheduled jobs.

Full Access
Question # 35

A Delta table of weather records is partitioned by date and has the below schema:

date DATE, device_id INT, temp FLOAT, latitude FLOAT, longitude FLOAT

To find all the records from within the Arctic Circle, you execute a query with the below filter:

latitude > 66.3

Which statement describes how the Delta engine identifies which files to load?

A.

All records are cached to an operational database and then the filter is applied

B.

The Parquet file footers are scanned for min and max statistics for the latitude column

C.

All records are cached to attached storage and then the filter is applied

D.

The Delta log is scanned for min and max statistics for the latitude column

E.

The Hive metastore is scanned for min and max statistics for the latitude column

Full Access